一、前言
对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交、并、差、聚合、排序等过程。而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么要想求得某个key对应的全量数据,那就必须把相同key的数据汇集到同一个Reduce任务节点来处理,那么Mapreduce范式定义了一个叫做Shuffle的过程来实现这个效果。 二、编写本文的目的 本文旨在剖析Hadoop和Spark的Shuffle过程,并对比两者Shuffle的差异。 三、Hadoop的Shuffle过程 Shuffle描述的是数据从Map端到Reduce端的过程,大致分为排序(sort)、溢写(spill)、合并(merge)、拉取拷贝(Copy)、合并排序(merge sort)这几个过程,大体流程如下: 上图的Map的输出的文件被分片为红绿蓝三个分片,这个分片的就是根据Key为条件来分片的,分片算法可以自己实现,例如Hash、Range等,最终Reduce任务只拉取对应颜色的数据来进行处理,就实现把相同的Key拉取到相同的Reduce节点处理的功能。下面分开来说Shuffle的的各个过程。 Map端做了下图所示的操作: 1、Map端sort Map端的输出数据,先写环形缓存区kvbuffer,当环形缓冲区到达一个阀值(可以通过配置文件设置,默认80),便要开始溢写,但溢写之前会有一个sort操作,这个sort操作先把Kvbuffer中的数据按照partition值和key两个关键字来排序,移动的只是索引数据,排序结果是Kvmeta中数据按照partition为单位聚集在一起,同一partition内的按照key有序。 2、spill(溢写) 当排序完成,便开始把数据刷到磁盘,刷磁盘的过程以分区为单位,一个分区写完,写下一个分区,分区内数据有序,最终实际上会多次溢写,然后生成多个文件 3、merge(合并) spill会生成多个小文件,对于Reduce端拉取数据是相当低效的,那么这时候就有了merge的过程,合并的过程也是同分片的合并成一个片段(segment),最终所有的segment组装成一个最终文件,那么合并过程就完成了,如下图所示 至此,Map的操作就已经完成,Reduce端操作即将登场 Reduce操作 总体过程如下图的红框处: 1、拉取拷贝(fetch copy) Reduce任务通过向各个Map任务拉取对应分片。这个过程都是以Http协议完成,每个Map节点都会启动一个常驻的HTTP server服务,Reduce节点会请求这个Http Server拉取数据,这个过程完全通过网络传输,所以是一个非常重量级的操作。 2、合并排序 Reduce端,拉取到各个Map节点对应分片的数据之后,会进行再次排序,排序完成,结果丢给Reduce函数进行计算。 四、总结 至此整个shuffle过程完成,最后总结几点: Regcode.prototype.draw = function(dom, callback = function (www.yongshiyule178.com/) {}) { // 绘图 // 获取canvas dom if (!this.paint) { // 如果没有2d对象,再进行赋值操作 this.canvas = dom; // 保存到this指针,方便使用 if (!this.canvas) return; this.paint =www.enzuo178.com this.canvas.getContext(www.yingka178.com'2d'); // 保存到this指针,方便使用 if (!this.paint) return; // 回调函数赋值给this,方便使用 this.callback = callback; } // 随机画布颜色,使用背景色 let colors = this.getColor(this.www.huarenyl.cn backgroundColor); this.paint.fillStyle = www.maituyul1.cn`rgba(${colors[www.tiaotiaoylzc.com]}, ${colors[www.dfgjpt.com]}, ${colors[2]}, 0.8)`; // 绘制画布 this.paint.fillRect(0, 0, this.canvas.width,www.yongshi123.cn this.canvas.height); 1、shuffle过程就是为了对key进行全局聚合 2、排序操作伴随着整个shuffle过程,所以Hadoop的shuffle是sort-based的